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Introduction 
In recent years, there has been a great deal of interest in the specific 

heat of chain and layer structures. It is well known that Debye-typc 
calculations1.* for two-dimensional lattices leads to a specific heat which, a t  
low temperature, varies as the second power of the sbeolute temperature, 
and this behavior has been observed experimentally.* Of even more in- 
terest to polymers, such considerations applied to a onedimensional lattice 
or “linear continuum” lead to a specific heat which, a t  low temperatures, 
varies as the first power of the absolute temperature. For such a linear 
continuum it is easy to show that the specific heat is given by the expression 

where x is hv/kT and el is hv/k ,  as usual. This expreesion clearly is linear 
in T for T << el, and this behavior is to be contrasted with the usual third 
power temperature dependence of the specific heat for most solids. It is to 
be expected that such a model would be a reasonable one for the behavior of 
such materials as selenium and tellurium and for some linear polymers, 
particularly polyethylene. Thus, a linear specific heat was observed 
experimentally by Anderson‘ for selenium, although later work by DeSorbo‘ 
showed that over a wider temperature range the specific heat of selenium 
deviated from strict proportionality to the temperature. 

Indeed, it would be expected that for any material, as the temperature is 
lowered and hence the dominant phonons become of longer and longer 
wavelength, the interchain interactions would become important and 
these simple onedimensional considerations would cease to apply. Thus, 
aside from the above-mentioned linear continuum theory, two other 
theoretical treatments of the specific heat of polymeric systems have been 
made. Reslizing that at extremely low temperatures any solid must 
come a three-dimensional continuum, Tarassova proposed that of the 3N 
possible normal modes of the solid, 3N0 were distributed according to the 
n o d  three-dimeneional distribution, and 3N1 according to a linear con- 
tinuum. Thus Tarsssov takes the frequency distribution to be 
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g(v) dv = 9Ns ~i-' V* dv 
o < v < v ,  

v1 < v < vm 
where g ( v )  is the frequency distribution function, vl is the frequency where 
the three-dimensional continuum goes into the linear continuum, and v,,, is 
some cuboff frequency. With the further restriction that 

= 3N1 (v, - v S - 1  dv 

one obtains for the specific heat,' 

DeSorbo6 found good agreement between this theory and the specific heat 
of selenium, but to our knowledge these considerations have never been 
applied to synthetic high polymers. 

Stmkmayer and Hecht7 approached the problem in an entirely different 
manner. Using the Born-von Karman" technique they computed the fre- 
quency distribution of a cubic lattice with very high force constante (pri- 
mary valence forces) in one direction, and weak force constants (van der 
Waals forces) in the other direction. As usual in such cases neither the 
frequency distribution nor the specific heat can be presented in closed form, 
but the specific heat is given as a function of only one parameter, T ,  = 
hv,/k. This computation, which was later extended by Genesky and 
Newel1,O has recently been used by Dole" and Starkweather29 for the 
analysis of polyethylene and polytetrafluoroethylene. 

Synthetic polymers are good examples of highly anisotropic materials 
which indeed approach chain lattices. However, due to the structural com- 
plexities of the backbone they do not in general make very good systems 
with which to test the theories mentioned. Polyethylene, however, is an 
exception. One can argue that C-H vibrations are of such a high frequency 
that at low temperatures the CH2 group acts essentially as a unit. One can 
also argue that the anisotropy in such a system is higher than any other. 
The backbone stretching or bending modes involve the deformation of 
carbon-carbon bonds and should thus have a very high Debye tempera- 
ture, whereas the transverse vibrations of the lattice do involve only van der 
Walls forces. Thus polyethylene at low temperatures should be a good 
example of a chain lattice. Indeed, Wunderlich and Dolelo found a linear 
portion in the specific heat temperature curve of polyethylene extending 
from -25 to,55OC., and Dole et  al.12 and Raine et all* found similar be- 
havior for high pressure polyethylene. Recently, however, Sochava'' has 
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published data in the low temperature region ( 1 7 4 ° K . )  which demon- 
strata that this linear behavior cannot be expected to continue to absolute 
zero. 

The heat capacity of polymers over a wide range of temperature is de- 
sirable also for other reasons. Recent theoretical analysis of the glass 
transition by Gibbs and DiMarzio” indicates that the entropy of a glass 
should approach zero as the observed glass transition temperature ap- 
proaches the temperature T2 of these authors, which is the glass tempera- 
ture which would be obsewed in an infinitely slow experiment. A measure- 
ment of the absolute entropy in the liquid state of two polymers which are 
identical except for degree of Crystallinity would allow one to draw some 
conclusions about the “zero-point” entropy of polymeric glasses. b u m -  
ing that at absolute zero the material is composed only of a glassy phase and 
a crystalline phase, and that the entropy of t.he liquids are comparable, the 
zero-point entropy of the glass is easily shown to be 

where Sob.’ and Sob,’ are the observed entropies (integral of C,/T of the 
higher and lower crystallinity species, respectively) and f2 and f1 are their 
degrees of crystallinity. High and low pressure polyethylene make reason- 
able systems to study this effect. The only difference in the entropy of the 
liquid would come from the degree of branching, and this difference is not 
expected to be large. To the extent, therefore, that this two phase concept 
can be applied to this system it makes a good system to test the Gibbs and 
DiMarziol* theory. 

Although several measurements of the heat capacity of high and low 
pressure polyethylene exist1+1a*16 none is over a wide enough temperature 
range to make this analysis possible. We therefore have measured the heat 
capacity of two types of polyethylene from liquid air temperatures into the 
melt. The polyethylenes used were the low pressure type Marlex pro- 
duced by the Phillips Petroleum Co. and also investigated by Wunderlich 
and Dolelo and Sochava,“ and which will hereafter be referred to as 
“linear,” and a high pressure type DYNK produced by the Union Carbide 
Corp., for which no measurements seem to exist, and which will be referred 
to as “branched.” 

Apparatus and Method 

For the branched polyethylene a calorimeter based on the deaign used 
by Scott et al.” was used. The calorimeter itself was surrounded by a radia- 
tion shield, the temperature of which was electronically controlled to be 
0.1 “C. below that of the calorimeter. The temperature was measured by a 
calibrated platinum resistance thermometer. A constant current of 1 ma. 
was psased through the thermometer and the potential measured by a 
Leeds & Northrup type K potentiometer. The null sensing device was a 
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Liston-Becker d.c. amplifier. Energy input to the calorimeter was measured 
by determining the current to the iron-Constantan heater and the potential 
across it, and by determining the time with a high precision clock (manu- 
factured by American Time Products, Inc. Power both for the heater and 
the thermometer waa provided by well-stabilized storage batteries. The 
heat capacity waa measured over 5OC. intervals, and the power was ad- 
justed 80 that this temperature rise took place in approximately 15 min. 
During the melting region, of course, this could not be done, and much 
smaller temperature changes were used. With this system the power input 
could be measured to about 0.1%. 

The method of operation was as follows. After balancing the potenti- 
ometer current and adjusting the thermometer current, heat waa supplied 
to the calorimeter, the current and voltage being measured by a Rubicon 
potentiometer. The output of the Liston-Becker amplifier a t  low gain 
was then fed to an electronic recorder to give a graphic picture of the course 
of the heating cycle. At the end of the heating cycle, the thermometer 
current and potential were again balanced, and, a t  high gain (0.3 p Y per 
recorder division) any temperature drifts due to heat loss by the calorimeter 
were recorded. These were treated in the standard way, and this correction 
amounted usually to a maximum of 2% except during melting of the 
sample. The overall precision of this technique amounted to *0.3%. 

It was found to be absolutely necessary to keep exchange gas in this 
calorimeter, or thermal equilibrium took a very long time to be estab- 
lished--eometimes as long as one-half hour-and a great deal of difficulty 
was experienced with leaks developing at  low temperatures. Furthermore, 
the filling factor was such that the heat capacity of the polymer was only 
15% of the total heat capacity so that the precision of the results for the 
polymer heat capacity was lowered to 34%. For these various reasons, 
for the linear polyethylene a much simpler and more direct system was 
used. A cylinder of the material containing Constantan heating coils was 
molded, and a hole drilled into it to receive the resistance thermometer. 
This cylinder was then suspended in an aluminum foil inside the radiation 
shield. The heat capacity of the aluminum, thermometer, and heating coil 
amounted to only 5% of the total heat capacity, and this could easily be 
corrected for without extensive calibration so that the precision of this 
system was greatly improved. The precision of these results is of the order 
of 0.5% and the overall accuracy probably about 1% (see below). This is 
essentially the same system used by Clement and Quinnell'8 for measure- 
ments on metals in the liquid helium region. 

Matericrls 
The 

linear had a density of 0.968 while the branched had a density of 0.924 at 
20°C. Their molecular weights.are unknown, but this is not considered 
important. The degree of branching of the linear is probably leas than one 
per thousand, while that of the branched is approximately 2.5%. 

Both the linear and the branched samples were well-annealed. 
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~ t s a n d D i s c a e r m ,  'II 

The results of the specific heat determinations are presented graphically 
in Figure 1, where only part of the data has been used. Smooth values are 
given in Table I. When plotted in this manner it is almost impossible to 
represent the specific heat through the melting region, because of the very 
high values obtained. For example, for the linear sample, values as high as 

TABLE I 
Smoothed Values of Specific Heat C, in Csloriee per Gram 

T, "K. Linear Branched T, "K. Linear Branched 

90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
364.7 

0.152 - 
0.167 0.160 
0.179 0.174 
0.192 0.185 
0.203 0.1% 
0.214 0.208 
0.224 0.219 
0.234 0,228 
0.244 0.239 
0.254 0.252 
0.265 0.265 
0.277 0.277 
0.287 0.293 
0.298 0.310 
0.311 0.330 
0.324 0.350 
0.337 0.371 
0.349 0.394 
0.365 0.417 
0.381 0.443 
0.398 0.469 
0.417 0.497 
0.437 0.529 
0.460 0.565 
0.485 0.609 
0.509 0.670 
0.537 0.757 
0.573 0.909 
- 1.019 

370 0.625 
370.7 - 
377.7 - 
380 0.709 
383.7 - 
385.5 - 
387.5 - 
389.2 - 
390 0.891 
395.2 - 
399.2 1.337 
401.2 - 
401.5 2.21 
403.2 4.39 
403.6 6.24 
404.1 8.34 
405.4 15.1 
405.6 31.5 
405.8 22.7 
406.8 19.7 
407.2 - 
408.5 1.466 
409.8 1.070 
413.2 - 
414.6 0.950 
415. - 
420.5 0.597 
426.6 0.599 
432.7 0.604 

- 
1.227 
1.463 

2.22 
2.74 
0.819 
0.557 

0.530 

- 

- 

- 
0.w - 
- 
- 
- 
- 
- 
- - 

0. L36 
- 
- 

0.541 

0.544 
- 
- 
- 
- 

500 cal./mole degree were obtained. Furthermore, as pointed out by Dole 
et al.,I* measurements in this region are hard to perform, and the apecific 
heat curve is thus somewhat schematic between 375 and =OK. for the 
branched and 390 and 412OK. for the linear. For this reason it is a little 
difficult to determine the melting point precisely from this kind of plot. 
In Figure 1 the values for Marlex obtained by Wunderlich and Dole'o and 
the low temperature data of Sochava'' were included, and both sets of data 
are seen to be in excellent agreement with the results. Also included were 
a few points from the data obtained by Dole et aL1* on a sample of high 
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pressure polyethylene. The latter results are somewhat higher, which is to 
be expected from the slightly lower density of their material (0.912 as com- 
pared to 0.924). Data on the branched sample are also in excellent agree- 
ment with the results of Sochava and Trapenanikova16 on an unidentified 
but presumably low density polyethylene. The heat capacity of the 
branched sample in the melt is lower than that of t.he linear material, the 
heat capacity of which is in excellent agreement with the data of Wunder- 
lich and Dolelo for the same material and of Dole et a1.'2 and Raine et  al.*a 
for branched polyethylene. The last two points for the branched sample 
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are almost certainly in error since the calorimeter developed a -- 
1 
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Fig. 1. The molar heat capacity of linear and branched polyethylene. (0) Linear; 
(A) branched; (0 )  data of Sochava (ref. 14); (0) dataof Wunderlich and Dole (ref. 10) 
which are both for linear polyethylene; ( x) meamrementa by Doleet a1 (ref. 12) on asam- 
ple of branched material of somewhat lower density than the authore'. 

at this temperature, but the error does not vitiate the conclusions, so the 
results were not repeated. 

There are several points of interest from these graphs. First it should be 
noticed that there is no clear-cut indication of a glass transition for either 
of these materials. There is perhaps a faint indication of a break in the 
curve for the branched samples at 160°K., where indeed mechanical meas- 
urements show a loss peak in polyethylene,1e but there is none at 250'K. 
where the mechanical measurements indicate another loss peak. Experi- 
ments in the vicinity of 160OK. were accompanied by rather slow equi- 
librium, as occurs in the transition region,20 but the effect on the specific 
heat was so subtle that a glass transition could not be unambiguously de- 
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termined. Nothing of the sort was evident for the linear sample, and indeed 
this latter, except for the extended melting range, behaves like any normal 
crystalline solid. Perhaps this lack of a clear-cut indication of a g l a  
transition should not be too surprising, for volume expansion measure- 
ments2I also do not give an unambiguous indication of a transition. Only 
the more sensitive mechanical dispersion measurements indicate transi- 
tions. 

Also of interest is the relative behavior of the two samples. Whereas 
above about 200°K. the specific heat of the branched is higher than that 
of the linear, below this temp6rature it seems actually to coincide with it or 
even be slightly below. Due to the relatively high error in the measure- 
ments for the branched sample it cannot, however, unambiguously be said 
that its specific heat is lower than that of the linear. 

Analysis 
In order to compare these results with any of the theories of specific 

heat the values of C,  must be converted to C,. This was done using the 
Nernst-Lindemann formula with a constant calculated to fit at 273'K. 
where data on the compressibility22 and thermal expansion exist.*' When 
comparing these results to the predictions of either the linear continuum 
(I.c.) theory or the Stockmayer-Hecht (S.H.) theory, both of which con- 
tain one parameter, it is customary to calculate the value of this parameter 
over a temperature range. Constancy of the parameter insures coincidence 
between theory and experiment. Results of these calculations are given in 
Table 11, B being calculated from the 1.c. theory and Tm from the S.H. 
theory. The behavior of the characteristic temperature is roughly the 

TABLE I1 
Characteristic Temperatures for Linenr and Branched 

Polyethylenes 

Linear Branched 
T ,  O K .  P Tmb e T m  

25 
50 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 

1270 833 
877 874 
829 889 
847 930 
889 984 
918 1004 
949 1WL 
968 1051 
966 1053 
957 1050 
923 1002 
890 996 
800 846 
667 685 

922 
958 
986 
986 
98 1 
97 I 
989 
787 
ch3<3!) 

1010 
1046 
1077 
1077 
1067 
1053 
978 
833 
642 

Calculated from a ortc-dimensional Debye solid. 
Calculsted from the Stockrnayer-Hecht theory (ref. 7). 
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=me for both theories. As temperature decreases from room temperature, 
the characteristic increases to a maximum then drops off again. For the 
S.H. theory it continues to drop, whereas in the 1.c. theory it rises again. 
This is because this theory predicts a linear behavior a t  very low tempera- 
tures, and the S.H. theory must thus be considered to be a better repre- 
sentation at  these temperatures. This is to be expected, for the S.H. theory 
takes into account interchain modes and is thus more realistic. It is com- 
forting, however, that both theories give roughly the same value of charac- 
teristic temperature. This is not too surprising on inspection of the integral 
frequency distribution curve given by S.H. $hich, except a t  the lowest and 
highest frequencies, is very similar to the I.c. frequency distribution. No 
particular significance is attached to the difference between the two 
samples. 

For both the linear and branched polyethylene the specific heat exceeds 
the Dulong and Petit value of 6 cal./mole long before the melting region is 
reached. This can be caused either by the structure of the CH2 unit or by 
some premelting. Although in the absence of reliable values for C, it is 
hardly worthwhile to pursue this point at great length, an attempt was 
made to fit the difference between the observed specific heat and that 
calculated by the 1.c. theory with an Einstein function, which should 
closely approximate this situation. The results of this calculation are 
shown in Table 111, where the values of the Einstein characteristic tempera- 
ture BE are given for a range of temperatures. Considering the crudity of 
the analysis, these values for the linear polyethylene are reasonably con- 
stant, and the wave numbers calculated from the characteristic tempera- 
ture of 1800 for the linear sample are 1250 cm.-l, which is not too far from 
the value of 1460 cm.-’ for the “scissors frequency” mode of CH2 vibration 
in polyethylene.28 It is not, however, worthwhile to pursue this further. 

TABLE I11 
Einetein Characteristic Temperatures 

T, OK. Linear Branched 
~ 

220 
240 
260 
280 
300 
320 
340 
360 
380 

2340 1583 
1967 1446 
1940 1376 
1728 1299 
1744 1293 
1658 1077 
1667 
1452 
1173 

An attempt also was made to fit the present data for the linear sample 
with the interaction theory for Tsrassov.6 Since this theory contains two 
parameters, ea and el, it is not possible to carry out the same type of analysis 
as above. What was done was to compute values of the specific heat from 
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eq. (3) for various values of 8, and el and to determine what values give the 
best fit with the data. Using an electronic computer this is not too dif- 
ficult. The results of this computation are shown in Figure 2, where the 
data of Sochava are also used. The best fit was obtained with values of 01 

Fig. 2. A' comparison of the Taraesov theory with experiment. The upper curve 
is theoretical with el = 820 and e, = 110 while the lower curve is from the preeent data and 
those of Sochava. 

of 820'K. and ea of llO°K., and the Tarassov function fits the data very 
well up to about 100'K., deviates upward and then crosses the experi- 
mental data a t  250'K. The data of Sochava and Trapenznikova*6 are also 
in good agreement with the result shown here. For purposes of compari- 
son with other materials,6 the values of and & for selenium are 370 and 
75 OK., respectively . 

Thenn0dYna;mic Analysis 

Using the data of S o c h a v ~ ~ ~  it is possible to determine the entropy and 
enthalpy referred to absolute zero of linear polyethylene and these values 
are given in Table IV, where values for the branched are also included. Be- 
cause of the ambiguity in the low temperature values of the latter its en- 
tropy have been arbitrarily made to coincide with that of the linear at  80'K. 
Most of these data were taken from integrations of large plots of the appro- 
priate specific heat data. However, in the melting region (above 395'K. for 
linear and 362OK. for branched) we have used the method of Dole et 81.12 

and used the heats actually supplied to the calorimeter. No data exist in 
the literature with which these data may be compared directly. However, 
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TABLE IV 
Entropy and Enthalpy Values 

Linear Branched 

SO, e.u./ Ho, cal./ SO, e.u./ Ho, cal./ 
T, O K .  mole mole mole mole 

20 0.1302 
40 0.447 
60 0.926 
80 1.402 

100 1.876 
120 2.330 
140 2.765 
160 3.184 
180 3.588 
200 3.979 
220 4.362 
240 4.739 
260 5.118 
280 5.497 
300 5.881 
320 6.276 
340 6.688 
360 7.119 
380 7.592 
385 7.725 
390 7.867 
395 8 . o n  
400 8.228 
405 9.011 
410 10.30 
415 10.42 

1.5 
12.2 
34.9 
68.7 1.402 

111.4 1.876 
161.6 2.312 
218.3 2.729 
281.2 3.133 
349.6 3.521 
423.9 3.920 
504.4 4.312 
591.6 4.732 
685.9 5.124 
789.2 5.551 
900.8 6.016 

1023.5 6.542 
1159.5 7.030 
1310.4 7.648 
1486.6 8.554 
1537.9 8.918 
1595.9 9.244 
1668.3 9.342 
1754.4 9.435 
2114.2 9.526 
2592.5 9.618 
2647.2 9.710 

68.7 
111.4 
157.9 
211.3 
270.8 
377.9 
412.1 
494.1 
586.5 
698.6 
807.6 
939.1 

1087.4 
1258.8 
1473.8 
1822.8 
1968.3 
2057.9 
2095.0 
2132.1 
2169.6 
2207.2 
2245.1 

an analysis of the data of Parks et  aLZ4 and of Finke et  al.,= on normal 
paraffins indicates an entropy a t  298.16'K. of about 6.0 e.u./mole of CHs, 
which is about 2.3% higher than our value of 5.863. This difference is not 
unreasonable. 

In order to calculate the entropy of the glass a t  absolute zero from eq. 
(5) ,  we used the data of Table IV and the degree of crystallinity. The 
latter may be calculated from the density, or from the specific heat meas- 
urements by methods previously outlined.lO~l*~la In addition, a variant of 
a method clue to Hoffmann was used. The entropy curve for the linear 
sample between 250 and 375°K. was fitted with a second-order equation in 
the temperature, and this was used to extrapolate the enthalpy of the solid 
to the melting point. The difference between the liquid enthalpy and this 
extrapolated curve was taken as the heat of fusion of the material, which, 
when divided by the heat of fusion of pure crystalline polyethylene, gives 
the degree of crystallinity. The results for the degree of crystallinity for 
the linear sample computed from the equations of Wunderlich and Dolelo 
are rather high but not impossible on the basis of recent results by Mat- 
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TABLE V 
& d t a  for Soo 

f, f, e.u./ 
linear branched Af go, mole 

+0.2 
Denaity, 25°C. 80.0 48.8 31.2 2.3 -l.o 

Specific heat. 87.5 47.5 40.0 1.8 
-0.7 
+0.1 

Specific heatb 93.8 47.0 46.8 1.6 -o.6 

Method outlined in text. 
b Method used by Wunderlich and Dole (ref. 10). 

suoka.28 The results for SOg are given in Table V. There is quite a high 
error associated with these results (see below), but the value of 1.0-2.6 
e.u./mole is not unreasonable in light of what has been observed for non- 
polymeric glasses.O0 The interpretation of this result in the absence of a 
clear-cut glass transition is open to question. Perhaps due to barriers to 
rotation, we have never reached a true glassy phase. Perhaps the true 
morphological picture of polyethylene is not that of a two-phaae amorphous- 
crystalline material, but rather one of imperfect yet essentially completely 
crystalline material. Certainly any attempt to assess the validity of thc 
glass transition theory of Gibbs and DiMarzio (which predicts the configura- 
tional entropy of a true glass to be zero) on the basis of the present results 
would be highly questionable. Nevertheless, it can be concluded from 
these results that the entropy is positive, and that for a hypothetical 
amorphous polyethylene it is somewhat larger than R In 2 (1.38) e.u./mole. 
This implies that in the glass the fraction of bonds flexed is somewhat more 
than one-half. 

conelaeions 
The lack of complete agreement between our reaults and theories of the 

specific heat of chain structure is perhaps not too surprising. Recent 
morphological studies indicate that polymers such as polyethylene even in 
the solid state are composed of highly crystalline lamellae approximately 
100 A. thick. This unique morphology would make surface effects impor- 
tant, and perhaps these may be the source of the discrepancy. This would 
be particularly true for the theory of Stockmayer and Hecht which as- 
sumes essentially an infinite crystal, and to a lesser extent for the Tarassov 
theory. One would not, in any case, expect the linear-continuum theory to 
fit very well. This same morphology may be the basis for the lack of an 
observable glass transition. 

Errors 
The average deviation of the experimental points from the smooth 

specific heat curve was 0.55% for the linear sample and 3.4% for the 



130 E PASSAGLIA AND H. K KEWORKIAN 

branched sample. Because of the large number of points this leads to only 
a small error in the integrals. However, the absolute error or, what is 
more important, the difference in absolute error between the two samples 
is more di5cult to assess. By comparison of these results with published 
values and the behavior of the curves themselves, it is concluded that the 
results for the branched sample may be low by as much as 2% and are 
probably not high. The results on the linear sample, particularly in the 
melt, may also be somewhat high. This was the basis for the error assign- 
ment in Table IV. It is felt that we have a maximum figure for Xog, but 
the minimum may be somewhat lower than the results. 

In addition to these experimental errors there was the di5culty of in- 
terpreting the meaning of thermodynamic measurements on what may be 
a nonequilibrium system such as a glass, as well as interpreting the meaning 
of a measured entropy change on a system as difficult to maintain at  ther- 
modynamic equilibrium as a polymer near the melting point. These are 
all errors which cannot be assessed, but it is felt that they will not change 
the qualitative nature of the conclusions. 

The authors wiah to thank Dr. Julian H. Gibba for many helpful discuseiona and Dr. 
H. D. Keith for hk aesistance in constructing the apparatue. 
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synopis 
The heat capacity of linear and branched polyethylene has been measured over the 

temperature range from 90’K. through the melting point. These and lower temperature 
data in the literature have been compared with the values calculated from a one-dimen- 
sional Debye model, the Stockmayer-Hecht calculation of the specific heat of polymers, 
and the two-parameter specific heat theory of Tarassov. The Stockmayer-Hecht cal- 
culation gives a better fit at very low temperatures than the one-diiensional Debye 
calculation, although the average characteristic temperatures are not too greatly differ- 
ent in the two cases. There is no appreciable difference between the linear and branched 
samples. The Tarassov theory gives an excellent fit at temperatures below 100’K. 
From the data the entropy and enthalpy referred to absolute zero were calculated. 
Although no obvious glass transition temperature was observed, the entropy difference 
between the two samples was used to calculate the residual entropy of “polyethylene 
glass” at absolute zero assuming a simple two-phase crystalline-amorphous model for the 
polymers. This residual entropy is 1.7 f 0.7 e.u./mole. 

R&Ulllb 
On a mesur6 la capacit6 calorifique du poly6thylhne lineaire et branch6 dans un do- 

maine de temphture allant de 90’K jusqu’au point de fusion. On a compar6 ces r6- 
sultata et ceux de la litt6rature effectu6s rl temperature plus basse avec les valeurs calcu- 
l6es , partir d’un modble unidimensionnel de Dehye, avec le calcul de Stockmayer-Hecht 
sur la chaleur sp6cifique des polymbres et avec la th6orie de la chaleur sp6cifique A deux 
parambtres de Tarassov. Le calcul de Stockmaher-Hecht donne une meilleure concord- 
ance pour les temp6ratures trbs basses que le calcul uni-dimensionnel de Dehye, bien que 
lea temperatures moyennes caract6ristiques ne soient pas tellement differentes dans les 
deux cas. I1 n’y a pas de difF6rence appreciable entre les Bchantillons lin6aires et bran- 
ch&. La th6orie de Tarassov donne un excellent accord pour des temperatures inferi- 
eures A100”K. A partir des dsultata on a calcul6 I’entropie et l’enthalpie rappofie au 
zBro absolu. Quoique nous n’ayons pas 0 b s e ~ 6  d’une friqon Bvidente la temp6rature de 
transition vitreuse, nous no- sommes servis de la difF6rence d’entropie entre les deux 
Bchantillons pour calculer l’entropie r6aiduelle du “poly6thyBne vitreux” au z6ro absolu 
en admettant un modhle simple A deux phases, cristalin amorphe, pour les polymkres. 
Cette entropie r6siduelle est de 1.9 + 0.9 e.u./mole. 

Znsammenfassung 

Die Wiirmekapazitiit von linearem und verzweigten Polyathylen wurde im Tempera- 
turbereich von 9OoK bis zum Schmelzpunkt gemessen. Diese Daten und Literaturda- 
ten bei tieferer Temperatur wurden sowohl mit den aus einem eindimensionalen Debye- 
modell berechneten Werten als auch mit der Stockmayer-HechtrBerechnung der spezifi- 
schen Wiirme von Polymeren und der zweiparametrigen Theorie der spezifischen Wiirme 
von Tarassov verglichen. Die Berechnung nach Stockmayer und Hecht Biefert bei sehr 
niedrigen Temperaturen eine besser tfbereinstimmung aLs die Berechnung nach dem ein- 
dimensionalen Debye-Modell, oblgiech die mittlere charakterische Temperatur in den 
beiden Fiillen nicht &u verschieden ist. Es besteht kein wesentlicher Unterschied 
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zwischen den linearen und vermeigten Proben. Die Theone von Taraesov liefert bei 
Temperaturen unterhalb 100°K eine ausgeseichnete ubereinstimm ung. AIM den Daten 
wurden Entropie und Enthdpie fiir den absoluten Nullpunkt berechnet. Eb trat xwar 
keine beobachtbare Clasumwandlungstempratur ad ,  dmh wurde der Entropieunter- 
schied twbcben den beiden F’roben zur Berechnung der Nullpunkteentropie‘des “Poly- 
iithylenglases” unter Annahme eines einfachen awie-Pheeen-Modells, kriataUin-orph, 
fiir die Polymeren verwendeat. Diem Nullpunktsentropie bet-, 1,Q f 0,Q E.U./ 
Mol. 
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