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Introduction

In recent years, there has been a great deal of interest in the specific
heat of chain and layer structures. -It is well known that Debye-type
calculations! 2 for two-dimensional lattices leads to a specific heat which, at
low temperature, varies as the second power of the absolute temperature,
and this behavior has been observed experimentally.? Of even more in-
terest to polymers, such considerations applied to a one-dimensional lattice
or “linear continuum’ lead to a specific heat which, at low temperatures,
varies as the first power of the absolute temperature. For such a linear
continuum it is easy to show that the specific heat is given by the expression
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where z is hv/kT and 6, is hv/k, as usual. This expression clearly is linear
in T for T < 6,, and this behavior is to be contrasted with the usual third
power temperature dependence of the specific heat for most solids. It is to
be expected that such a model would be a reasonable one for the behavior of
such materials as selenium and tellurium and for some linear polymers,
particularly polyethylene. Thus, a linear specific heat was observed
experimentally by Anderson* for selenium, although later work by DeSorbo®
showed that over a wider temperature range the specific heat of selemum
deviated from strict proportionality to the temperature.

Indeed, it would be expected that for any material, as the temperature is
lowered and hence the dominant phonons become of longer and longer
wavelength, the interchain interactions would become important and
these simple one-dimensional considerations would cease to spply. Thus,
aside from the above-mentioned linear continuum theory, two other
theoretical treatments of the specific heat of polymeric systems have been
made. Realizing that at extremely low temperatures any solid must be-
come a three-dimensional continuum, Tarassov® proposed that of the 3N
possible normal modes of the solid, 3N; were distributed according to the
normal three-dimensional distribution, and 3N, according to a linear con-
tinuum. Thus Tarassov takes the frequency distribution to be
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g(v) dv = N3 v~ ? v2 dp 2)
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where g(») i8 the frequency distribution function, », is the frequency where
the three-dimensional continuum goes into the linear continuum, and »,, is
some cut-off frequency. With the further restriction that
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one obtains for the specific heat,®
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DeSorbo® found good agreement between this theory and the specific heat

of selenium, but to our knowledge these considerations have never been
applied to synthetic high polymers.

Stockmayer and Hecht” approached the problem in an entirely different
manner. Using the Born-von Karman® technique they computed the fre-
quency distribution of a cubic lattice with very high force constants (pri-
mary valence forces) in one direction, and weak force constants (van der
Waals forces) in the other direction. As usual in such cases neither the
frequency distribution nor the specific heat can be presented in closed form,
but the specific heat is given as a function of only one parameter, T, =
hvn/k. This computation, which was later extended by Genesky and
Newell,’ has recently been used by Dole!! and Starkweather?® for the
analysis of polyethylene and polytetrafluoroethylene.

Synthetic polymers are good examples of highly anisotropic materials
which indeed approach chain lattices. However, due to the structural com-
plexities of the backbone they do not in general make very good systems
with which to test the theories mentioned. Polyethylene, however, is an
exception. One can argue that C-H vibrations are of such a high frequency
that at low temperatures the CH; group acts essentially as a unit. One can
also argue that the anisotropy in such a system is higher than any other.
The backbone stretching or bending modes involve the deformation of
carbon-carbon bonds and should thus have a very high Debye tempera-
ture, whereas the transverse vibrations of the lattice do involve only van der
Walls forees. Thus polyethylene at low temperatures should be a good
example of a chain lattice. Indeed, Wunderlich and Dole' found a linear
portion in the specific heat temperature curve of polyethylene extending
from —25 to 55°C., and Dole et al.!? and Raine et al'® found similar be-
havior for high pressure polyethylene. Recently, however, Sochava!* has

4)




LINEAR AND BRANCHED POLYETHYLENE 121

published data in the low temperature region (17-60°K.) which demon-
strates that this linear behavior cannot be expected to continue to absolute
€70,

The heat capacity of polymers over a wide range of temperature is de-
girable also for other reasons. Recent theoretical analysis of the glass
traneition by Gibbs and DiMarzio® indicates that the entropy of a glass
should approach zero as the observed glass transition temperature ap-
proaches the temperature T of these authors, which is the glass tempera-
ture which would be observed in an infinitely slow experiment. A measure-
ment of the absolute entropy in the liquid state of two polymers which are
identical except for degree of crystallinity would allow one to draw some
conclusions about the “zero-point” entropy of polymeric glasses. Assum-
ing that at absolute zero the material is composed only of a glassy phase and
a crystalline phase, and that the entropy of the liquids are comparable, the
zero-point entropy of the glass is easily shown to be

o _ Sobs — Slobs 5

So ot ()
where Sobs2 and Sop.! are the observed entropies (integral of C,/T of the
higher and lower crystallinity species, respectively) and f; and f, are their
degrees of crystallinity. High and low pressure polyethylene make reason-
able systems to study this effect. The only difference in the entropy of the
liquid would come from the degree of branching, and this difference is not
expected to be large. To the extent, therefore, that this two phase concept
can be applied to this system it makes a good system to test the Gibbs and
DiMarzio!® theory.

Although several measurements of the heat capacity of high and low
pressure polyethylene exist10-13.1¢ none is over a wide enough temperature
range to make this analysis possible. We therefore have measured the heat
capacity of two types of polyethylene from liquid air temperatures into the
melt. The polyethylenes used were the low pressure type Marlex pro-
duced by the Phillips Petroleum Co. and also investigated by Wunderlich
and Dole!® and Sochava,!* and which will hereafter be referred to as
“linear,” and a high pressure type DYNK produced by the Union Carbide
Corp., for which no measurements seem to exist, and which will be referred
to as “branched.”

Apparatus and Method

For the branched polyethylene a calorimeter based on the design used
by Scott et al.}” was used. The calorimeter itself was surrounded by a radia-
tion shield, the temperature of which was electronically controlled to be
0.1°C. below that of the calorimeter. The temperature was measured by a
calibrated platinum resistance thermometer. A constant current of 1 ma.
was passed through the thermometer and the potential measured by a
Leeds & Northrup type K potentiometer. The null sensing device was a
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Liston-Becker d.c. amplifier. Energy input to the calorimeter was measured
by determining the current to the iron-Constantan heater and the potential
across it, and by determining the time with a high precision clock (manu-
factured by American Time Products, Inc. Power both for the heater and
the thermometer was provided by well-stabilized storage batteries. The
heat capacity was measured over 5°C. intervals, and the power was ad-
justed so that this temperature rise took place in approximately 15 min.
During the melting region, of course, this could not be done, and much
smaller temperature changes were used. With this system the power input
could be measured to about 0.19.

The method of operation was as follows., After balancing the potenti-
ometer current and adjusting the thermometer current, heat was supplied
to the calorimeter, the current and voltage being measured by a Rubicon
potentiometer. The output of the Liston-Becker amplifier at low gain
was then fed to an electronic recorder to give a graphic picture of the course
of the heating cycle. At the end of the heating cycle, the thermometer
current and potential were again balanced, and, at high gain (0.3 u » per
recorder division) any temperature drifts due to heat loss by the calorimeter
were recorded. These were treated in the standard way, and this correction
amounted usually to a maximum of 29, except during melting of the
sample. The overall precision of this technique amounted to +0.39%,.

It was found to be absolutely necessary to keep exchange gas in this
calorimeter, or thermal equilibrium took a very long time to be estab-
lished—sometimes as long as one-half hour—and a great deal of difficulty
was experienced with leaks developing at low temperatures. Furthermore,
the filling factor was such that the heat capacity of the polymer was only
15%, of the total heat capacity so that the precision of the results for the
polymer heat capacity was lowered to 3—49%,. For these various reasons,
for the linear polyethylene a much simpler and more direct system was
used. A cylinder of the material containing Constantan heating coils was
molded, and a hole drilled into it to receive the resistance thermometer.
This cylinder was then suspended in an aluminum foil inside the radiation
shield. The heat capacity of the aluminum, thermometer, and heating coil
amounted to only 5%, of the total heat capacity, and this could easily be
corrected for without extensive calibration so that the precision of this
system was greatly improved. The precision of these results is of the order
of 0.5% and the overall accuracy probably about 19, (see below). This is
essentially the same system used by Clement and Quinnell’® for measure-
ments on metals in the liquid helium region.

Materials
Both the linear and the branched samples were well-annealed. The
linear had a density of 0.968 while the branched had a density of 0.924 at
20°C. Their molecular weights-are unknown, but this is not considered

important. The degree of branching of the linear is probably less than one
per thousand, while that of the branched is approximately 2.5%.
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Results and Discussion

The results of the specific heat determinations are presented graphically
in Figure 1, where only part of the data has been used. Smooth values are
given in Table I. When plotted in this manner it is almost impossible to
represent the specific heat through the melting region, because of the very
high values obtained. For example, for the linear sample, values as high as

TABLE 1
Smoothed Values of Specific Heat C, in Calories per Gram

T, °K. Linear Branched 7, °K. Linear Branched

90 0.152 — 370 0.625 —

100 0.167 0.160 370.7 — 1.227
110 0.179 0.174 377.7 — 1.463
120 0.192 0.185 380 0.709 —_

130 0.203 0.196 383.7 — 2.22
140 0.214 0.208 385.5 — 2.74
150 0.224 0.219 387.5 — 0.819
160 0.234 0.228 389.2 — 0.557
170 0.244 0.239 390 0.891 —

180 0.254 0.252 395.2 —_ 0.530
190 0.265 0.265 399.2 1.337 —

200 0.277 0.277 401.2 —_ 0.530
210 0.287 0.293 401.5 2.21 —_

220 0.298 0.310 403.2 4.39 —

230 0.311 0.330 403.6 6.24 —

240 0.324 0.350 404.1 8.34 —

250 0.337 0.371 405.4 15.1 —

260 0.349 0.394 405.6 31.5 —

270 0.365 0.417 405.8 22.7 —

280 0.381 0.443 406.8 19.7 —_

290 0.398 0.469 407.2 — 0.536
300 0.417 0.497 408.5 1.466 —

310 0.437 0.529 409.8 1.070 —

320 0.460 0.565 413.2 — 0.541
330 0.485 0.609 414.6 0.950 —

340 0.509 0.670 415. — 0.544
350 0.537 0.757 420.5 0.597

360 0.573 0.909 426.6 0.599 —

364.7 — 1.019 432.7 0.604

500 cal./mole degree were obtained. Furthermore, as pointed out by Dole
et al.,!? measurements in this region are hard to perform, and the specific
heat curve is thus somewhat schematic between 375 and 388°K. for the
branched and 390 and 412°K. for the linear. For this reason it is a little
difficult to determine the melting point precisely from this kind of plot.
In Figure 1 the values for Marlex obtained by Wunderlich and Dole!® and
the low temperature data of Sochava!* were included, and both sets of data
are seen to be in excellent agreement with the results. Also included were
a few points from the data obtained by Dole et al.!? on a sample of high
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pressure polyethylene. The latter results are somewhat higher, which is to
be expected from the slightly lower density of their material (0.912 as com-
pared to 0.924). Data on the branched sample are also in excellent agree-
ment with the results of Sochava and Trapenznikova!® on an unidentified
but presumably low density polyethylene. The heat capacity of the
branched sample in the melt is lower than that of the linear material, the
heat capacity of which is in excellent agreement with the data of Wunder-
lich and Dole!® for the same material and of Dole et al.!2 and Raine et al.!?
for branched polyethylene. The last two points for the branched sample
are almost certainly in error since the calorimeter developed a short circuit
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Fig. 1. The molar heat capacity of linear and branched polyethylene. (O) Linear;
(A) branched; (®) data of Sochava (ref. 14); (3) data of Wunderlich and Dole (ref. 10)
which are both for linear polyethylene; ( X ) measurements by Doleet al (ref.12) on a sam-
ple of branched material of somewhat lower density than the authors’.

at this temperature, but the error does not vitiate the conclusions, so the
results were not repeated.

There are several points of interest from these graphs. First it should be
noticed that there is no clear-cut indication of a glass transition for either
of these materials. There is perhaps a faint indication of a break in the
curve for the branched samples at 160°K., where indeed mechanical meas-
urements show a loss peak in polyethylene,®® but there is none at 250°K.
where the mechanical measurements indicate another loss peak. Experi-
ments in the vicinity of 160°K. were accompanied by rather slow equi-
librium, as occurs in the transition region,® but the effect on the specific
heat was so subtle that a glass transition could not be unambiguously de-
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termined. Nothing of the sort was evident for the linear sample, and indeed
this latter, except for the extended melting range, behaves like any normal
crystalline solid. Perhaps this lack of a clear-cut indication of a glass
transition should not be too surprising, for volume expansion measure-
ments?! also do not give an unambiguous indication of a transition. Only
the more sensitive mechanical dispersion measurements indicate transi-
tions.

Also of interest is the relative behavior of the two samples. Whereas
above about 200°K. the specific heat of the branched is higher than that
of the linear, below this température it seems actually to coincide with it or
even be slightly below. Due to the relatively high error in the measure-
ments for the branched sample it cannot, however, unambiguously be said
that its specific heat is lower than that of the linear.

Analysis

In order to compare these results with any of the theories of specific
heat the values of C, must be converted to (,. This was done using the
Nernst-Lindemann formula with a constant calculated to fit at 273°K.
where data on the compressibility?? and thermal expansion exist.?! When
comparing these results to the predictions of either the linear continuum
(l.c.) theory or the Stockmayer-Hecht (S.H.) theory, both of which con-
tain one parameter, it is customary to calculate the value of this parameter
over a temperature range. Constancy of the parameter insures coincidence
between theory and experiment. Results of these calculations are given in
Table II, 8 being calculated from the l.c. theory and 7', from the S.H.
theory. The behavior of the characteristic temperature is roughly the

TABLE 1I
Characteristic Temperatures for Linear and Branched
Polyethylenes
Linear Branched
T, °K. (' Tm® ] Tm

25 1270 833

50 877 874

80 829 889
100 847 930 922 1010
120 889 984 958 1046
140 918 1004 986 1077
160 949 1032 986 1077
180 968 1051 981 1067
200 966 1053 971 1053
220 957 1050 989 978
240 923 1002 787 833
260 890 996 639 642
280 800 846 .
300 667 685

* Calculated from a orfe-dimensional Debye solid.
b Calculated from the Stockmayer-Hecht theory (ref. 7).
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same for both theories. As temperature decreases from room temperature,
the characteristic increases to a maximum then drops off again. For the
S.H. theory it continues to drop, whereas in the l.c. theory it rises again.
This is because this theory predicts a linear behavior at very low tempera-
tures, and the S.H. theory must thus be considered to be a better repre-
sentation at these temperatures. Thisis to be expected, for the S.H. theory
takes into account interchain modes and is thus more realistic. It is com-
forting, however, that both theories give roughly the same value of charac-
teristic temperature. This is not too surprising on inspection of the integral
frequency distribution curve given by S.H. which, except at the lowest and
highest frequencies, is very similar to the l.c. frequency distribution. No
particular significance is attached to the difference between the two
samples.

For both the linear and branched polyethylene the specific heat exceeds
the Dulong and Petit value of 6 cal./mole long before the melting region is
reached. This can be caused either by the structure of the CH, unit or by
some premelting. Although in the absence of reliable values for C, it is
hardly worthwhile to pursue this point at great length, an attempt was
made to fit the difference between the observed specific heat and that
calculated by the l.c. theory with an Einstein function, which should
closely approximate this situation. The results of this calculation are
shown in Table I1I, where the values of the Einstein characteristic tempera-
ture 6z are given for a range of temperatures. Considering the crudity of
the analysis, these values for the linear polyethylene are reasonably con-
stant, and the wave numbers calculated from the characteristic tempera-
ture of 1800 for the linear sample are 1250 cm. ™!, which is not too far from
the value of 1460 cm.~! for the ‘“‘scissors frequency’’ mode of CH, vibration
in polyethylene.?* It is not, however, worthwhile to pursue this further.

TABLE 111
Einstein Characteristic Temperatures

T, °K. Linear Branched
220 2340 1583
240 1967 1446
260 1940 1376
280 1728 1299
300 1744 1293
320 1658 1077
340 1567
360 1452

- 380 1173

An attempt also was made to fit the present data for the linear sample
with the interaction theory for Tarassov.® Since this theory contains two
parameters, 6; and 6,, it is not possible to carry out the same type of analysis
as above. What was done was to compute values of the specific heat from
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eq. (3) for various values of 8, and 6, and to determine what values give the
best fit with the data. Using an electronic computer this is not too dif-
ficult. The results of this computation are shown in Figure 2, where the
data of Sochava are also used. The best fit was obtained with values of 6,
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Fig. 2. A comparison of the Tarassov theory with experiment. The upper curve

is theoretical with 8; = 820 and 6; = 110 while the lower curve is from the present data and
those of Sochava.

of 820°K. and 6; of 110°K., and the Tarassov function fits the data very
well up to about 100°K., deviates upward and then crosses the experi-
mental data at 250°K. The data of Sochava and Trapenznikova!® are also
in good agreement with the result shown here. For purposes of compari-
son with other materials,® the values of 8, and 8; for selenium are 370 and
75°K., respectively.

Thermodynamic Analysis

Using the data of Sochava!t it is possible to determine the entropy and
enthalpy referred to absolute zero of linear polyethylene and these values
are given in Table IV, where values for the branched are also included. Be-
cause of the ambiguity in the low temperature values of the latter its en-
tropy have been arbitrarily made to coincide with that of the linear at 80°K.
Most of these data were taken from integrations of large plots of the appro-
priate specific heat data. However, in the melting region (above 395°K. for
linear and 362°K. for branched) we have used the method of Dole et al.!2
and used the heats actually supplied to the calorimeter. No data exist in
the literature with which these data may be compared directly. However,



128 E. PASSAGLIA AND H. K. KEVORKIAN

TABLE IV
Entropy and Enthalpy Values
Linear Branched
S, eu./  Hy, cal./ Se, eu./ Hy, cal./
T, °K. mole mole mole mole
20 0.1302 1.5
40 0.447 12.2
60 0.926 34.9
80 1.402 68.7 1.402 68.7
100 1.876 111.4 1.876 111.4
120 2.330 161.6 2.312 157.9
140 2.765 218.3 2.729 211.3
160 3.184 281.2 3.133 270.8
180 3.588 349.6 3.521 377.9
200 3.979 423.9 3.920 412.1
220 4.362 504 .4 4.312 494.1
240 4.739 591.6 4.732 586.5
260 5.118 685.9 5.124 690.6
280 5.497 789.2 5.551 807.6
300 5.881 900.8 6.016 939.1
320 6.276 1023.5 6.542 1087 .4
340 6.688 1159.5 7.030 1258.8
360 7.119 1310.4 7.648 1473 .8
380 7.592 1486.6 8.554 1822.8
385 7.725 1537.9 8.918 1968.3
390 7.867 1595.9 9.244 2057.9
395 8.027 1668.3 9.342 2095.0
400 8.228 1754.4 9.435 2132.1
405 9.011 2114 .2 9.526 2169.6
410 10.30 2592.5 9.618 2207 .2
415 10.42 2647.2 9.710 2245.1

an analysis of the data of Parks et al.2* and of Finke et al.,?® on normal
parafling indicates an entropy at 298.16°K. of about 6.0 e.u./mole of CH,,
which is about 2.39, higher than our value of 5.863. This difference is not
unreasonable.

In order to calculate the entropy of the glass at absolute zero from eq.
(5), we used the data of Table IV and the degree of crystallinity. The
latter may be calculated from the density, or from the specific heat meas-
urements by methods previously outlined.!®1213 In addition, a variant of
a method due to Hoffman? was used. The entropy curve for the linear
sample between 250 and 375°K. was fitted with a second-order equation in
the temperature, and this was used to extrapolate the enthalpy of the solid
to the melting point. The difference between the liquid enthalpy and this
extrapolated curve was taken as the heat of fusion of the material, which,
when divided by the heat of fusion of pure crystalline polyethylene, gives
the degree of crystallinity. The results for the degree of crystallinity for
the linear sample computed from the equations of Wunderlich and Dole!?
are rather high but not impossible on the basis of recent results by Mat-
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TABLE V
Results for S,°
f: fy e.u./
linear branched Af 8%, mole
+0.2
Density, 25°C. 80.0 488 312 23 _
Specific heat* 87.5 47.5 40.0 1.8
-0.7
+0.1
Specific heat® 93.8 47.0 46.8 1.6 —0.6

* Method outlined in text.
b Method used by Wunderlich and Dole (ref. 10).

suoka.® The results for S% are given in Table V. There is quite a high
error associated with these results (see below), but the value of 1.0-2.6
e.u./mole is not unreasonable in light of what has been observed for non-
polymeric glasses.® The interpretation of this result in the absence of a
clear-cut glass transition is open to question. Perhaps due to barriers to
rotation, we have never reached a true glassy phase. Perhaps the true
morphological picture of polyethylene is not that of a two-phase amorphous-
crystalline material, but rather one of imperfect yet essentially completely
crystalline material. Certainly any attempt to assess the validity of the
glass transition theory of Gibbs and DiMarzio (which predicts the configura-
tional entropy of a true glass to be zero) on the basis of the present results
would be highly questionable. Nevertheless, it can be concluded from
these results that the entropy is positive, and that for a hypothetical
amorphous polyethylene it is somewhat larger than R In 2 (1.38) e.u./mole.
This implies that in the glass the fraction of bonds flexed is somewhat more
than one-half.

Conclusions

The lack of complete agreement between our results and theories of the
specific heat of chain structure is perhaps not too surprising. Recent
morphological studies indicate that polymers such as polyethylene even in
the solid state are composed of highly crystalline lamellae approximately
100 A. thick. This unique morphology would make surface effects impor-
tant, and perhaps these may be the source of the discrepancy. This would
be particularly true for the theory of Stockmayer and Hecht which as-
sumes essentially an infinite crystal, and to a lesser extent for the Tarassov
theory. One would not, in any case, expect the linear-continuum theory to
fit very well. This same morphology may be the basis for the lack of an
observable glass transition.

Errors

The average deviation of the experimental points from the smooth
specific heat curve was 0.559, for the linear sample and 3.49], for the
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branched sample. Because of the large number of points this leads to only
a small error in the integrals. However, the absolute error or, what is
more important, the difference in absolute error between the two samples
is more difficult to assess. By comparison of these results with published
values and the behavior of the curves themselves, it is concluded that the
results for the branched sample may be low by as much as 29, and are
probably not high. The results on the linear sample, particularly in the
melt, may also be somewhat high. This was the basis for the error assign-
ment in Table IV. It is felt that we have a maximum figure for S%, but
the minimum may be somewhat lower than the results.

In addition to these experimental errors there was the difficulty of in-
terpreting the meaning of thermodynamic measurements on what may be
a nonequilibrium system such as a glass, as well as interpreting the meaning
of a measured entropy change on a system as difficuit to maintain at ther-
modynamic equilibrium as a polymer near the melting point. These are
all errors which cannot be assessed, but it is felt that they will not change
the qualitative nature of the conclusions.

The authors wish to thank Dr. Julian H. Gibbe for many helpful discussions and Dr.
H. D. Keith for his assistance in constructing the apparatus.
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Synopsis

The heat capacity of linear and branched polyethylene has been measured over the
temperature range from 90°K. through the melting point. These and lower temperature
data in the literature have been compared with the values calculated from a one-dimen-
sional Debye model, the Stockmayer-Hecht calculation of the specific heat of polymers,
and the two-parameter specific heat theory of Tarassov. The Stockmayer-Hecht cal-
culation gives a better fit at very low temperatures than the one-dimensional Debye
calculation, although the average characteristic temperatures are not too greatly differ-
ent in the two cases. 'There is no appreciable difference between the linear and branched
samples. The Tarassov theory gives an excellent fit at temperatures below 100°K.
From the data the entropy and enthalpy referred to absolute zero were calculated.
Although no obvious glass transition temperature was observed, the entropy difference
between the two samples was used to calculate the residual entropy of “polyethylene
glass’’ at absolute zero assuming a simple two-phase crystalline-amorphous model for the
polymers. This residual entropy is 1.7 & 0.7 e.u./mole.

Résumé

On a mesuré la capacité calorifique du polyéthylene linéaire et branché dans un do-
maine de température allant de 90°K jusqu’au point de fusion. On a comparé ces ré-
sultats et ceux de la littérature effectués & température plus basse avec les valeurs caleu-
lées , partir d’un modele unidimensionnel de Dehye, avec le calcul de Stockmayer-Hecht
sur la chaleur spécifique des polymeres et avec la théorie de la chaleur spécifique 4 deux
parametres de Tarassov. Le calcul de Stockmaher-Hecht donne une meilleure concord-
ance pour les températures trés basses que le caleul uni-dimensionnel de Dehye, bien que
les températures moyennes caractéristiques ne soient pas tellement differentes dans les
deux cas. Il n’y a pas de différence appréciable entre les échantillons linéaires et bran-
chés. La théorie de Tarassov donne un excellent accord pour des températures inféri-
eures 3 100°K. A partir des résultats on a calculé Pentropie et ’enthalpie rapportée au
zéro absolu. Quoique nous n’ayons pas observé d’une fagon évidente la température de
transition vitreuse, nous nous sommes servis de la différence d’entropie entre les deux
échantillons pour calculer 'entropie résiduelle du “polyéthyléne vitreux’” au zéro absolu
en admettant un modele simple & deux phases, cristalin amorphe, pour les polymeres.
Cette entropie résiduelle est de 1.9 + 0.9 e.u./mole.

Zusammenfassung

Die Wirmekapazitiat von linearem und verzweigten Polyithylen wurde im Tempera-
turbereich von 90°K bis zum Schmelzpunkt gemessen. Diese Daten und Literaturda-
ten bei tieferer Temperatur wurden sowohl mit den aus einem eindimensionalen Debye-
modell berechneten Werten als auch mit der Stockmayer-Hecht-Berechnung der spezifi-
schen Wirme von Polymeren und der zweiparametrigen Theorie der spezifischen Wirme
von Tarassov verglichen. Die Berechnung nach Stockmayer und Hecht Biefert bei sehr
niedrigen Temperaturen eine besser Ubereinstimmung als die Berechnung nach dem ein-
dimensionalen Debye-Modell, oblgiech die mittlere charakterische Temperatur in den
beiden Fillen nicht allzu verschieden ist. Ks besteht kein wesentlicher Unterschied
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zwischen den linearen und versweigten Proben. Die Theorie von Tarassov liefert bei
Temperaturen unterhalb 100°K eine ausgeseichnete UJbereinstimmung. Aus den Daten
wurden Entropie und Enthalpie fiir den absoluten Nullpunkt berechnet. Es trat swar
keine beobachtbare Glasumwandlungstemperatur auf, doch wurde der Entropieunter-
schied rwischen den beiden Proben zur Berechnung der Nullpunktsentropie‘des ‘Poly-
dthylenglases’ unter Annahme eines einfachen zwie-Phasen-Modells, kristallin-amorph,
fiir die Polymeren verwendent. Diese Nullpunktsentropie betriigt, 1,9 & 0,9 E.U./
Mol.
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